A century ago, the periodic table looked much different than it does today. It had empty spots for elements that had not yet been found, and ended at uranium (element 92), the heaviest known element until 1940. But scientists were dreaming about artificially creating even heavier elements.

“For some reason, they thought you could go beyond uranium,” said Berkeley Lab scientist Gauthier Deblonde. “Making those artificial elements is a scientific challenge, but just thinking about making something new that nobody had ever seen before – I think that was the true intellectual and scientific leap.”

Starting in the 1930s, scientists at Lawrence Berkeley National Laboratory – or, the Rad Lab, as it was called then – began building the big machines and assembling the teams of scientists and engineers to chase those elements down. Ernesto Orlando Lawrence’s charisma, unbridled enthusiasm, and almost uncanny ability to procure financial donations from private sources enabled him to recruit the best and the brightest. These included Edwin McMillan, Luis Alvarez, Glenn Seaborg, and Emilio Segrè, all of whom would go on to be Nobel laureates.

Over the next several decades they were credited with discovering 16 elements, including every element from neptunium (element 93) to seaborgium (106). “It was the golden age of nuclear science,” said Jose Alonso, a researcher who was on the team that discovered element 106.

Click here to see a short video on Berkeley Lab’s discovery of 16 elements.

Click here for all things periodic table at Berkeley Lab!

Read full article here.

Want More Investigative Content?


Please enter your comment!
Please enter your name here